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1 Introduction
In astrophysics almost all experimental information is gathered through telescope observations,
for the simple reason that the physics and distance scales behind phenomena astrophysicists
are interested in are still unreacheble in laboratory conditions. One illustrative example is
probably the confirmation of the predictions made by A. Einstein, in his theory of general
relativity, which were done through observations (Eddington et al. (1919)). Namely, two
expeditions led by English astrophysicists, Crommelin and Eddington, conducted observations
of a few bright stars located close to the solar disc during the phase of a total eclipse of 1919
1. They managed to demonstrate that there is indeed a displacement in the positions of the
stars, being almost exact to the predicted value of 1.74” 2. From the aspect of theory this
meant that light, i.e. electromagnetic radiation, can feel the presence of gravitational field.
This bending of light in the presence of a massive body, inspired by phenomena of refraction,
is called gravitational lensing. If the object in case has a strong gravitational field the effect
is strong, and hence the name strong gravitatinal lensing, otherwise it is refered to as weak
gravitational lensing effect. In this project, I was more concerned with the latter.

The subtle difference of these two effects is in the way of obtaining the measurements. The
galaxies, the background objects whose light rays are being bent by some massive object in
the foreground, have their own intrinsic ellipticity (look at section 2.1) 3 and orientation on
the sky, which are both inherently random. Now, in the strong lensing regime, the distortion
(often refered to as shear) of the galaxies is evident (figure 1 - left image) and it can be
measured directly, but in the weak lensing (WL) regime (figure 1 - right image) the shears
become comparable to instrinsic galaxy shapes and it is impossible to measure it directly. As
a result, when doing WL measurements it is very important to determine the ellipticity very
precisely in order to determine the resulting shear with high accuracy. One of the goals of
this project was to do exactly that, i.e. to implement a more precise image analysis technique
which is going to be used in the future WL surveys with incresingly better measurement
precision (for example the EUCLID mission ESA (2021)).

To emphasize the importance of both of these effects, it is enough to say that by measuring
the deflection of light rays it is possible to trace the gravity of some foreground object, and
therefore its mass, which means it is possible to map the mass distribution throughout the uni-
verse and ultimately map out the distribution of dark matter, testing the current cosmological
models (see section 2.1).

1This means that the Moon’s disc covers completely the solar disc
2An arc second [”] is equal to 1◦/3600
3Essentially the ratio of the longer towards the shorter axis of the galaxy shape
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Figure 1: Depiction of two different lensing regimes. The image in the left shows an illustration
of the strong lensing regime, where the gravitational field is the strongest. As the observation
is done further away from the source of distortion, the lensing effect weakens and now the
shear becomes comparable (or even smaller) than the intrinsic galaxy ellipticity and therefore,
in order to obtain the shear it is necessary to average out both the intrinsic ellipticities and
orientations. On the right image, the best fit gaussians to the galaxy shape can be seen around
each object in black ellipse-like line.; Picture is taken from Mellier (1999)

Image analysis techniques that have been developed until now need to be improved in
order to use the full potential of the upcoming surveys. Just for comparison, one of the most
frequently used method is the KSB method (short from Kaise - Squires - Broadhurst) Kaiser
et al. (1995). The method uses a certain weight function when calculating shear (so called
shear susceptibility factor P γ - a nonlinear function of signal), which makes the deconvolution
procedure (removing instrumental error) hard. Furthermore, the basis for image decomposition
is neither complete nor orthogonal and the P γ does not respond linearly with shear and that
introduces further biases.

Shapelets, on the other hand, constitute a complete and orthogonal basis and are very easy
to manipulate with. In certain shapelet representations, deconvolution becomes simple matrix
multiplication, which means it can be done fairly fast (see chapter 4. in Refregier (2001)).
Shapelets are also well suited in capturing the shape of an object, given the proper β-scale
(explanation offered in section 2.2) which means the intrinsic ellipticity could be captured well,
leaving the shear value unchained after the averaging procedure. The problem with current
modelling techniques is that they choose single β - scale for their shapelet basis and standard
least squares fitting routines in order to determine the best shapelet representation of a given
image. Fallback of this method is that the bias is pretty hard to determine, and higher-order
shapelets (look at explanation in section 2.2) are included in the reconstruction, which is bad
since those higher-order shapelets are likely to capture some residual noise not corrected by
deconvolution (see figure 10b).

Instead of using plain least squares, for this project we used sparse techniques (section 3.1)
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and instead of using single β-scale basis, we constructed an improved compound shapelet basis
(Bosch (2010)) - a compound polar elliptical basis (section 3). We managed to show that with
these two improvements it is possible to generate realistic mock galaxy images, which could be
used later on in bias estimation for different shape analysis techniques. Also, we demonstrated
that by using sparse techniques it is possible to reduce dimensionality of the shapelet space
(look at the figure 10) but preserve the quality of reconstruction. This even allows a new type
of galaxy classification scheme. But, to conduct the classification correctly, appropriate metric
for measuring dissimilarity between two galaxies should be found (section 6.1). This is still
an ongoing work which aims to find correlation between shapelet basis coefficients of different
galaxies and provide further dimensionality reduction. Furthermore, a way of making a new
mock galaxy set by perturbation was suggested, preserving the realistic nature of galaxy image
but at the same time changing its shape (see figure 13).

This paper is organized as follows: in section 2 some outlines of the mathematics and
physics behind WL and shapelet formalism is given. The algorithms and their stability tests
are given in sections 3, 4 respectively. And finally the sections 5, 6.1 are dedicated to the
results of generating a mock galaxy image set and the data analysis techniques respectivelly.

2 Theory background
In this section basic theory needed for interpreting the results is going to be outlined. First
chapter 2.1 gives a clarification of terms such as shear, ellipticity and offers a bit more insight
into how the actual mass distribution can be obtained from lensing measurements (for further
information great reviews of the field are Refregier (2003), Mellier (1999)). Second part of
this section, section 2.2, gives a more detailed picture of the shapelet formalism which is
essentially based on the mathematical framework of quantum mechanics. In short, by solving
the eigenvalue problem of quantum mechanical oscillator, the basis functions one obtains, the
Hermite polynomials, are very similiar to shapelets up to proper scaling factors. Because of
the vast number of details behind the mathematical framework of shapelets a lot of references
are given, and the section was written as concise and comprehensive as possible so that the
main emphasis is on the results.

2.1 Weak lensing - basics

When it comes to weak lensing it is necessary to understand that no photons are lost during
the process of lensing, they are simply redirected. This allows construction of such a model
which is nothing but mapping of the source’s surface brightness from the space before lensing
(think of the undistorted image of a galaxy before lensing occurs) and after lensing (distorted
image). As a consequence of this, all comes down to the construction of appropriate Jacobian
of transformation and giving physical meaning to its components. Put into mathematical
language:

f(θj) = f(Aijθj), (1)

where f(θj) is the initial surface brightness profile and A is the Jacobian of transformation,
which is nothing more than:
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Figure 2: An illustration of the quantities used for description of the shear process. The γ1
(γ2) represents shear along (at 45◦ degrees from) the referent axis (for more details look at
the paragraphs below). Also the ellipticity ε1 and ε2 is shown and its comparison with the
shear factors. As the ε1, ellipticity along the x-axis increases so does the elongation of the
ellipse in that direction and as it can be seen, it is superposed with the effect of γ1. The case
with the ε2 is similiar, it also superposes with γ2 but in a bit more complex way. Therefore,
as it is demonstrated here, the inherent ellipticites of galaxies and their orientations must be
averaged out.

A =
∂(δθi)

∂θj
= (δij −Ψij) =

(
κ+ γ1 γ2
γ2 κ− γ1

)
. (2)

The Ψij corresponds to the dimensionless projected potential which is connected to the
κ(θ), convergence factor, through the Poisson equation κ(θ) = 4Ψ(θ). Convergence factor is
the same as magnification factor in the weak lensing regime, because there is small dependance
on θ, and κ could be regarded as a constant. The projected potential should be thought of
as a perturbation factor from the unit mapping, since it represents a deviatoin factor from
unit matrix Jacobian δij, because in the weak lensing regime detA ≈ 1, i.e. the distortion
of the initial surface brightness is small 4. It should be mentioned that because both the
scaling factor κ and the projected potential Ψ are functions of θ, lens plane coordinates, they
are consequently connected to the comoving coordinates of the lens χ(z), where z represents
the redshift 5. This can be understood from the fact that the angular distances between

4Note here that as detA → 0, the magnification µ ∼ 1/detA goes to infinity, and those points are called
critical points - points where distortion is pretty strong (left picture in figure 1), which are numerous in the
strong lensing regime;

5Redshift represents fractional change in wavelength of emitted photons due to radial motion of the source,
pretty much as in Doppler effect. It can serve as a distance scale since it is connected to cosmological scaling
factor a(t) through the equation 1 + z = a(to)/a(te), where to is the time of the observation, and te is time of
emission of the photon; The cosmological scaling factor essentially tells how to choose the unit scale for the
distance of your referent system to compensate for the accelerated expansion, and it is related to the Hubble
parameter through the equation H(t) = ȧ(t)/a(t). For more information, a great discussion is offered in Hogg
(2000)
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objects in the lens plane fall of with incresing distance from the observer (≈ 1/χ(z)), which
in return depends on the Hubble parameter at epoch H(z), i.e. dχ = dz/H(z). This means
that by knowing the scaling factor κ (for example from the luminosity-mass relation) and
the redshift z correctly one could test the cosmological models of expansion, by mapping
the mass distribution present at a given redshift. The remaining parameters of observational
importance are γ1 and γ2. They represent the induced shear (stretching and compressing)
along the referent axis (γ1) and at 45◦ angle (γ2). On figure 2 a depiction of their effect
is shown. Therefore, if one wants to calculate very precisely the shear factors γ1 and γ2 it
is necessary to find the shape of the galaxies, i.e. the ellipticities, in the sheared image as
accurately as possible. The shape of a galaxy could be found by simply finding the best
representation of the surface brightness profile in some 2D function space (for example a 2D
de Vaucouleur profile or a 2D shapelet space) and then obtaining the second moments of
that representation. In figure 3, a comparison between 1D de Vaucouleur profile and shapelet
reconstruction is shown. For generalization to two dimensions, one could do an outer product
as shown in the next section (equation 8).

Figure 3: A comparison between the de Vaucouleur profile (an exponential profile ∼ e−x/x0 ,
where x0 is some characteristic radius - for example the rms radius) and the shapelet recon-
struction of this profile. Because this is just a comparison plot, the y-axis could correspond
to some chosen unit of intensity - for example magnitudes, and the x-axis could correspond to
the distance from the centre of the galaxy in arcseconds.

The de Vaucouleur profile reconstructs fairly well the profiles of regularly shaped galaxies
whose brightness profile varies quite the same as the trend shown with the black curve in the
image above, but fail to reproduce well the central surface brightness. While with the well
chosen shapelet basis, the central surface brightness is captured more accurately 6, shapelets
fail to reconstruct the edges of the brightness profile well, as can be seen from the above
image. But, still, the shapelets have the upper hand because they can capture details of the

6This is a serious advantage of shapelets because the brightest region of the galaxy is essentially the one
from which the second moments (ellipticities) are determined, and therefore the capturing well the central
profile is of immense importance in WL measurements
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much numerous irregularly shaped galaxies, and therefore can determine the shape better.
Nonetheless, bias needs to be determined well for the shapelet techniques in order for them to
be used in shape measurements for the upcoming WL surveys.

Following from this a clear motivation can be seen for developing a more precise image
analysis pipeline. In the next section, a bit more thery about the shapelet formalism is going
to be discussed.

2.2 Shapelets

Figure 4: The first few Hermite polynomials are shown here. The n’s here correspond to the
order of Hermite polynomial (see equation 6).

Theory behind shapelets can be understood well within the mathematical framework of quan-
tum mechanics (QM). Therefore, here approach borrowed from the quantum mechanics frame-
work would be used in explaining the basics of the shapelets model. As it is known from classi-
cal mechanics (CM), the dynamical evoulution of a system is contained within the Hamiltonian
of a given system. It is no different in QM, except the phase space variables in CM, under
quantization principles are mapped to the operator space in QM.

Hamiltonian of 1D quantum harmonical oscillator (QHO) can be written as:

Ĥ =
P̂ 2

2m
+

1

2
mω2X̂2, (3)

where Ĥ, p̂, x̂ are operator of Hamiltonian, momentum and position respectively, while m
and ω are mass of the object oscillating and frequency of oscillation respectively. It is more
convinient to write down equation 3 with the help of â+ = 1/

√
2(X̂+ iP̂ ), â− = 1/

√
2(X̂− iP̂ )

operators. This reduces the problem to solving the eigenvalue problem of â+â−, which have
their eigenvalues belonging to the set N0.The equation 3 now looks like:

Ĥ = â+â− + 1/2 (4)
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From here it can be shown that the functions satisfying Ĥ |ψ〉 = E |ψ〉, where E is the avail-
able energy in state |ψ〉, (in coordinate representation

[
− ~

2m
d2

dx2
+ 1

2
mω2x2

]
ψ(x) = Eψ(x))

are:

ψn(x) =

[
1

2nn!π1/2

]1/2
·
(mω
π~

)1/4
·
[
mω

~
x− d

dx

]n
e−1/2

mω
~ x2 . (5)

In the above equation, the obtained ψn functions represent the eigen functions of the
Hamiltonian H and the ~ represents of course the planck constant (for more details suggested
book is Cohen Tannoudji (1991)). Actually, expression

[
mω
~ x−

d
dx

]n
e−1/2

mω
~ x2 is a generator

function for Hermite polynomials (within a constant factor) Hn(x) 7. These functions, along-
side proper scaling of the x-space (a prefered set of coordinates to be used), which depends
upon the size of the object of interest in the image, forms the shapelets as defined in paper
Refregier (2001):

φn =

[
1

2nn!π1/2

]1/2
Hn(x)e−x

2/2, (6)

Bn(x; β) = β−1/2φn(xβ−1/2) (7)

where β is the above mentioned scaling factor used for scaling of the x-space. Of course,
Bn functions are orthonormal and form a complete basis, a direct consequence of φn being
the eigen functions of Hamiltonian 8. These attributes of shapelets make them ideal for image
decomposition 9, because they can reconstruct a given object arbitrarily well. But, this is only
if infinite number of shapelets is used, which of course is not practical thing to do, therefore
one uses finite number of shapelets, which depends upon the wished level of detail. The
advantage of using shapelets is that their reconstruction converges fairly quickly so even with
few dozen shapelets the reconstruction is pretty accurate (figure 6). The shapelets written
down in equation 6 are called cartesian shapelets.

Before it is possible to make a decomposition of a galaxy image into the shapelet basis,
the 1D shapelets from equation 6 need to be generalized to a 2D case because an image is a
2D object. This can be done in two ways. Either by calculating the outer product of two 1D
shapelets given by equation 6 or constructing using a polar shapelet representation, which are
inherently 2D functions. In the first case we obtain:

φn(x) = φn1(x1)⊗ φn2(x2) =


φn1(x

0
1) · φn2(x

0
2) · · · φn1(x

M
1 ) · φn2(x

0
2)

φn1(x
0
1) · φn2(x

1
2) · · · φn1(x

M
1 ) · φn2(x

1
2)

... . . . ...
φn1(x

0
1) · φn2(x

N
2 ) · · · φn1(x

M
1 ) · φn2(x

N
2 )


N×M

, (8)

where the resulting 2D shapelet φn(x) has dimension [N×M ] matching image dimensions.
As it can be seen the initial 1D shapelets (φn1(x1) and φn2(x2)) need to be sampled at points
{xi1}i≤M and

{
xj2
}
j≤N to account for the pixelization of the image.

7First few are: H1(x) = 1, H2(x) = 2x,H3(x) = 4x2 − 2
8note the φn differs from ψn only in a constant factor
9Here the formalism needs to be generalized to the 2D case, see §3 and §5 in Refregier (2001)
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(a) (b)

Figure 5: Depiction of sampled shapelet functions. The expressions used to generate these
basis shapelets are 8 for cartesian shapelets, image (a), and 9 for image (b). As it was men-
tioned in the text above, the analytical shapelet expressions need to be sampled appropriately
in order to account for the pixelization of the galaxy image. Essentially what is done is certain
coefficients are given for each of these basis shapelets, i.e. pixel values are multiplied with
those coefficients, and then they are added up accordingly in an attempt to reconstruct the
original image. For the basis shapelets different kinds were used (see section 4.1) and for find-
ing the appropriate coefficients different fitting procedures were used (section 3). The colours
vary from blue (negative values) to red (positive values).

Second method is to use polar shapelets. This turns out to have an upper hand in most
cases over the the use of cartesian shapelets, because the polar shapelets capture the symmetry
of the galaxy in the image better. To obtain polar shapelets the apporach is the same, just the
original Hamiltonian for a QHO needs to be written in polar coordinates and its eigenvalue
problem solved. The eigen functions one would obtain are:

χn,m(r, φ) = (−1)(n−|m|)/2
[

[(n− |m|)/2]!

π[(n+ |m|)/2]!

]1/2
r|m|L

|m|
(n−|m|)/2(r

2)e−r
2/2e−imφ, (9)

the polynomials L|m|(n−|m|)/2(r
2) are called Laguerre polynomials. Here (r, φ) represent stan-

dard polar coordinates. The n andm indices could be associated to the n andm quantum num-
bers known as the main / energy quantum number and magnetic / angular momentum quan-
tum number. The difference is that for given n, here m has the range of {−n,−n+ 2, · · · , n}.
On figure 5, a comparison of the cartesian and polar shapelets is shown. When the basis func-
tions are acquired it is easy to do the decomposition. It all comes down to finding appropriate
coefficients so that the expression:
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f(x) =
N0∑
n

fnBn(x; β), (10)

where the N0 gives the dimension of the basis, the fn’s are the aforementioned coefficinets.
Bn’s represent the shapelet functions φn in the chosen coordinates x and scalled with the
selected β-scale. The n parameter corresponds to the pair (ni, nj) used in the outer product
in the cartesian case (see 5), and in polar case n corresponds to (n,m) pair.

From the previous it should be clear that if we refer to the image as f(x), where f(x)
represents the intensity of the given pixel at position x on the image, it is possible to decompose
this function into the shapelet basis by use of equation 10. With the decomposition obtained
it is then easy to find analytical expressions for some astrometric quantities as the centroid
position, total flux and the rms radius. Those expression could be found by calculating
corresponding moments of the given image (look at chapter 3.2 in Refregier (2001)).

This kind of choice for shapelet functions allows them to remain invarint after a Fourier
transform 10, which makes them quite suitable for convolution / deconvolution applications
(but this has it’s own difficulties Bosch (2010)). It is worth to mention that within the
framework of QM it is fairly easy to represent the effects of shear, rotation, translation etc.
These are nothing more than coordinate transformations x→ x′ = Ψx+ ε, where Ψ is a linear
transformation (the matrix Ψ from equation 2). Expanding f ′(x′), the sheared / distorted
image, into a series around x′, a place in the image where shearing occurs, f ′(x′)→ f(x(x′)),
in the linear approximation it would become:

f ′ ' (1 + ρR̂ + κK̂ + γjŜj + εiT̂i)f, (11)

where ρ, κ, γj, εi are parameters of rotation, contraction/dilation, shear and translation, and
R̂, K̂, Ŝj, T̂i are matrix representations of corresponding operators (they are listed in equation
32 in Refregier (2001)). These operators can be written down in terms of momentum and
position operators which gives them an intuitive action on f , following from the mathemat-
ical framework of QM. From that it is obvius that the rotation operator corresponds to the
angular momentum operator. Using the momentum and position representation in the â+
and â− space, action of previously mentioned operators can be even further simplified to just
multiplication by appropriate constant and change of the basis shapelet used. For example
â+ |φn〉 =

√
n+ 1 |φn+1〉, which means take shapelet |φn+1〉 and multiply it with

√
n+ 1 to

obtain the right transformation.
In the next section methods we used for finding the set of coefficients {fn} are going to be

discussed.
10As can be foreseen from the duality property of p̂ and x̂
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Figure 6: Here an example of shapelet reconstruction is shown. Always, in the upcoming
figures regarding decomposition, the upper left image is going to represent the original image.
The upper right and lower left are going to be the reconstructed and the residual image.
Lower right image is going to hold information on the chosen coefficients (set {fn}) and
their values. For measuring the quality of reconstruction, the Euclidian distance between
images is calculated normalized with the squared sum of pixels in the original image, that is,∑

ij(I
ij
orig. − I

ij
reconst.)

2/
∑

ij(I
ij
orig.)

2 (labeled as frac. of energy). It can be seen that the shape
of the galaxy in the centre is captured fairly well, but also a bit of the noisy part of the image
around the galaxy can be also seen in the reconstruction, which is an unwanted feature. On
the other hand, a great property of the shapelet reconstruction can be seen in the efficiency
of denoising the initial image. This can be seen from the parameters of the fitted gaussian to
the noise in the image (lower left image). After reconstruction is reduced from original, µ ∼ 0,
which means that the mean pixel value of the residual image is close to zero. Of course, by
further increasing number of shapelets used in reconstruction, the more and more noise would
be captured. Therefore it is necessary to first remove all the noise coming from the instrument
itself used for imaging and then do the shapelet analysis. Also, take a look at the section
4.2 to see how stable the shapelet reconstructions are - an important feature when trying to
generate mock galaxy images to be later used in the bias determination. The peculiar number
28 was chosen because that is the number of all possible polar shapelets up to order 7 (see
section 4.1 for further explanation). 10



3 Algorithms used and their description
Image analysis is a synonym for image representation, because in order to do any analysis
on the image a proper model (basis) for representation of the objects in question needs to
be developed. Therefore, while trying to find appropriate basis to represent a given image it
is also of practical importance to reduce the size of that basis, but keep the wanted details
as much unchanged as possible. For example, if an image of a galaxy is 100 × 100 px, then
one would need 104 numbers to represent this image. In contrary, if one would use shapelets
the galaxy could be very well captured with OMP algorithm using only 28 shapelets in polar
Elliptical basis (see paragraphs above, equation 17 and look at figure 6). In the paper Bosch
(2010) it was discussed that the compound basis is the best so far for reconstructing a given
image, which is confirmed and enhanced a bit in this work (look at the section 4.1). Problem
arising when dealing with this kind of basis is that it is overcomplete, and hence it is possible
to obtain multiple equally accurate representations of a given image in that basis, which is
not desirable at all. Therefore, in order to preserve the accuracy of the reconstruction and at
the same time preserve the solution uniqueness it is important to somehow further constrain
the search for the best representation. This implies that the algorithms to be used should
have some optimizing factor involved, for example minimizing l0 ≡ ||·||0, l1 ≡ ||·||1, l2 ≡ ||·||2
norms. The ||v||0 represents the sum of all nonzero components of that vector, ||v||1 norm
is just

∑
i |vi|, sum of absolute values of its componenents, and ||v||2 norm is

∑
i |vi|2, or

simply the Euclidian norm of that vector. The algorithms used for this project are the OMP
algorithm (section 3.1 and the Singular-Value-Decomposition (SVD) algorithm, generalization
of the plain least-squares fit (section 3.2). A short description of the algorithms is offered in
the following sections.

3.1 Orthogonal Matching Pursuit (OMP)

Before describing the OMP algorithm I would like to make few remarks regarding the relation
between uniqueness of a projection to a given basis and the number of nonzero coefficients
used. Consider the following problem:

min ||x||0 so that Ax = b (12)

Equation 12 comprises of finding the decomposition x [N ] of an input vector b [M ] (think
of an image), in a basis represent with matrix A [M × N ], with addition of an optimizing
constraint with a purpose to minimize the number of nonzero coefficients used. Numbers in
square brackets correspond to the dimension of the variable. In general, one could consider a
simple least squares problem here, but as it was mentioned earlier, we want to deal with an
overcomplete basis and constrain the solution as much as possible. The plain least squares
method constrains the l2 norm (minimizes ||Ax − b||2) which a poor choice of constraint as
the dimension of the basis increases (look the explanation in 6.1). For comparison of the
performance of the OMP algorithm, the generalization of the least squares method, the SVD,
was used. Essentially, the SVD algorithm solves a kind of generalized eigenvalue problem of
the matrix A, see section 3.2 for more details.

Another reason behind wanting to minimize the number of nonzero coefficients ||x||0 (µ0)
is the guarantee of obtaining a unique solution when µ0 < SA. The number SA refers to
the spark(A)/2, which is the smallest number of linearly-dependent columns of A (see Elad
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(a) (b) (c)

Figure 7: A depiction of the first iteration of the OMP algorithm. The vector x (red vector)
is given in the true basis x-y-z, but our basis of choice d1-d2-d3 (blue lines), in which we are
looking to find appropriate decomposition, doesn’t have to match the initial basis. In the first
iteration (a), all the scalar products 〈x| |di〉 are calculated and the closest vector is found with
minimum l2 norm of the residual (green vector r). In this case, image (b), the closest axis is
d3 and the projection of x on that axis is the vector π31. Now from the remaining set of basis
vectors, d1 and d2, the next closest one is found and added to the set selected basis vectors.
So, if the µ0 = 2, OMP algorithm selected d2 and d3 axes as the closest with π31 and π32 as
their projections (c).

(2010)). This is a very neat thing to know, because by calculating spark one can tell something
about the global optimality of the solution. Spark is not very easy to calculate for an arbitrary
matrix for one simple reason - it becomes a massive combinatorial problem. Nevertheless, it
is good to keep this in mind because most of the time the decomposition is going to be sparse
(the chosen µ0 is going to be small) and therefore it is probable that we are going to have
a unique solution 11, but of course to be certain we would have to calculate the value of
spark(A). This was left for the future work because it slows down the processing pipeline,
and we were interested here in demonstrating the concept.

Now that the optimization of µ0 was justified, it is natural to first consider a greedy
algorithm for solving the problem stated in equation 12. One of the algorithms to consider is
the OMP algorithm.

In short, what the algorithm does is finding a best matching vector (biggest dot product)
from the basis (row (column) in the base matrix A), by finding the closest one by minimizing l2
norm of the difference, and kepping it as a best matching vector (BMV). In the next iteration,
from the set of N − 1 vectors (one was already used), BMV is found and added into the BMV
set. Note that here l2 norm is minimized as well as the number of nonzero components of
vector b (see equation 12). After the number of iteration, or in other words after the desired
number of nonzero components µ0 is found, algorithm terminates and the resulting BMV set of
vectors is given as a solution to 12. For more details look at the book Elad (2010). Specifically,
in the implementation written for this project, OMP from the scikit-learn python package
was used. On the figure below depiction of first iteration of the OMP algorithm is shown 7.

11This seems to hold in all the cases we tried. Varying the number of shapelets in the basis didn’t change
the coefficients much, which infers that we were below the SA value.
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3.2 Singular Value Decomposition (SVD)

min ||x||2 so that Ax = b (13)

In this section the constraint consists of the minimizaition of the l2 norm of b 13. One
could try doing the following thing12:

x =
(
A†A

)−1
A†b (14)

It is clear that if ATA is a singular matrix, inverse can’t be calculated. Therefore, in order
to deal with this singularity it is best to rephrase the problem. SVD deals with this in an
elegant way. Essentially, one has to solve a sort of "generalized" eigenvalue problem for A,
and then it would be possible to represent A as A = UΣV †. Columns of matrix U constitute
a basis in the range of A, while columns of V span the best-fit k−dimensional subspace (Ωk)
of A, for 1 ≤ k ≤ N . One can think about columns of A as points in some N − dimensional
space, and Ωk as a subspace for which

∑
i d

2
i is minimal, where di is a distance of ith point to

the Ωk subpsace. The matrix Σ is a diagonal matrix which consists of values σi following from
σiui = Avi, where ui and vi are ith column of U and V repsectively.

When SVD of A is found, that is U , V and Σ matrices, it is possible to obtain the x from:

x = V Σ
†
U †b (15)

For more detailed description refer to Berry R. et al. (2004) and the Princeton computer
science course Arora (2012).

Now that the algorithms have been presented, their differences are going to be explicitly
shown in the next section alongside the best shapelet basis {Bn} (recall 10) so far constructed,
in terms of reconstruction accuracy.

4 Testing stability and precision
Before doing any analysis on real observations it is important to test the stability of algorithms
(see 4.1 for more details on stability) and the proposed shapelet besis (see section 4.1) in order
to decide which is most suitable to deal with noisy images. This needs to be considered since
there is always going to be some residual noise in even very carefully processed images, because
it is impossible to model all the relevant effects of the instrument upon the measurement.

First of all, it should be mentioned that here we are dealing with discrete objects such as
images, hence using a continuous functions for shapelets is going to involve some interpolation
which is not suitable. Instead of using continuous functions, it is better to sample that
continuous function at certain points which correspond to the positions of the pixels a given
input image. As it was mentioned at the end of section 2.2, image can be thought of as a
function of pixel intensity (f(x)). Then the shapelet basis is going to be some set of 2D
functions 13 sampled at coordinates corresponding to the positions of the pixels in the initial
image intended for decomposition.

When the basis for decomposition is selected, the decomposition could be done by some
of the algorithms discussed in the previous section and it could be determined what basis
performs the best for the given algorithm.

12The A† = (AT )∗, where ∗ means conjugation while T means transpose.
13They need to be 2D because the image is a 2D object
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4.1 Precision tests

(a) EC basis (b) EP basis

Figure 8: Here, comparison between the cartesian and polar coordinate representation of elliptical
shapelets is shown. Modelled image from galsim14 package was take on purpose in order to clearly
see the difference in the central region. The precision of the brightness profile can be further increased
by the use of compound basis Bosch (2010). Here OMP method was used for decomposition.

Prior to choosing appropriate coordinate representation of the shapelet basis it is important
to notice what kind of symmetry does the object we wish to represent have. For example, in
the case of a galaxy it is some kind of polar symmetry, because galaxies are mainly ellipsoid-
like in the images. Therefore it is expected that the polar basis performs better than the
cartesian one (as can be seen in the figure 8). Furthermore, the galaxy can have some arbitrary
orientation, and to capture the orientation well all possible m values for given order n of the
polar shapelet need to be included into the basis (note that m controls the orientation of the
shapelet, equation 9). For instance, if one would like to include polar shapelets with n ≤ 4 in
the basis, then it is best to include all possible pairs of n and m, i.e.:

(n,m) ∈ {(0, 0),

(1,−1), (1, 1),

(2,−2), (2, 0), (2, 2),

(3,−3), (3,−1), (3, 1), (3, 3),

(4,−4), (4,−2), (4, 0), (4, 2), (4, 4)},

which are all shown in figure 5b. In this work we considered couple different representations
- cartesian, polar, Elliptical cartesian (EC),Elliptical polar (Epolar). All of these previous ones
are with single beta scales, in addition we also considered multiple beta scale basis, namely,
Compound polar, cartesian, cartesian Elliptical and polar Elliptical - Cpolar, CC , Ce

C and Ce
polar

respectively.
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Just to clarify things, the Elliptical in the names of the basis is there because the grid
used for sampling shapelet functions was represented through the ellipse equation in the given
coordinates. In other words, pixel coordinates (x, y) are seen differently in different represen-
tations:

cartesian : (x, y)→ ((x− x0), (y − y0))

polar : (x, y)→ (r, φ) ,

r =
√

((x− x0)2 + (y − y0)2) ,
φ = atan2((y − y0), (x− x0)),

EC : (x, y) given (θ, a, b)→ (u, v) ,

u =(x− x0) cos(θ)/a+ (y − y0) sin(θ)/b ,

v =(y − y0) sin(θ)/b− (x− x0) cos(θ)/a,

EP : (x, y) given (θ, a, b)→ (r, φ) ,

φ = atan2((y − y0), (x− x0)),
r =r0

√
(b/a) cos(φ+ θ)2 + (a/b) sin(φ+ θ)2,

(16)

where (x, y) are the pixel coordinates, x0 and y0 represent coordinates of the centroid of
the image (essentially the center of the object in the image), atan2 is nothing more than the
plain atan but with attention to which quadrant lies the point ((x − x0), (y − y0)). The EC
and EP are characterized by (θ, a, b) with θ being the orientation of the ellipse and a, b being
smaller and longer semi-major axis of the ellipse respectively. These parameters are deter-
mined beforehand by fitting a gaussian to the galaxy shape. The compound representations
(Cpolar, CC , C

e
C , C

e
polar) are with the same coordinate transformations as shown in equations

16, but with multiple β-scales included in the basis. Because these are ordinary coordinate
transformations no difference is to be expected between them. Nonetheless, difference can be
seen in comparison of the EC and EP basis (shown in figure 8). This is another example of
why it is important to choose the basis correctly, since some representations simply capture
the symmetry of the object in image better than others and compensate for the pixelization
effect 15.

The basis which best tackles with this pixelization effect turned out to be Ce
polar (see figure

9). It was noticed that the Cpolar/Ce
polar performs slightly better than CC or Ce

C , because
it uses a smaller number of different beta scales, hence the solution of the decomposition is
"more" unique. For both algorithms (OMP and SVD) the following results hold:

η(Ce
polar) ≥ η(Cpolar) > η(Ce

C) ≥ η(CC) > η(EP ) > η(EC). (17)

In the above equaton, the quality of reconstruction of the selected basis, regardless of the
algorithm used, is given by η (in figures 8 and 9 look at lower left plots). This is an improvement
in respect to previously constructed compound basis discussed in paper by Bosch (2010) which

15Pixelization effect is the synonym for the fact that the continuos distribution of brightness on the sky is
sampled discretely on the pixels of the camera, which constrains the resolution of an image
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used Ce
C . On figure 10, comparison between OMP and SVD algorithms using Ce

polar basis is
shown.

(a) Cepolar basis with β = 0.99 (b) Cepolar with β = 1.98

(c) Cepolar with β = 3.961

Figure 9: The performance of compound elliptical basis is shown in this figure. Again, as in figure
8b an image from galsim16. Here OMP method was used for decomposition.

4.2 Stability tests

Next, the stability of different algorithms is going to be discussed. The pipeline of the stability
tests is shown in algorithm 4.1. The test is designed so that the variance of the shapelet
coefficients (the set {fn}) and their value can be tracked. Bear in mind that the coefficients

16



are the ones defnining how different shapelets in the basis are going to be combined in the
reconstruction. If the relative variation of the coefficients, upon increasing noise, is small and
the distance test (see 4.1) gives small offset then the algorithm is labeled as more stable than
the one giving opposite results, which is labeled as unstable (see captions of figures 19 and
20).

It seems that, when the OMP algorithm is chosen, the Cpolar and Ce
polar bases are a bit

less stable than CC and Ce
C , but the polar ones perform better than cartesian ones when it

comes to reconstruction (fraction of energy in residual image is small - see caption in figure 6
for explanation). So to summarize this part:

ζ(CC) ∼ ζ(Ce
C) ≥ ζ(Cpolar) ≥ ζ(Ce

polar) (18)

where ζ is the stability measure of OMP and SVD algorithms with the selected basis. We’re
discussing here only the compound representations, since they have the biggest precision (see
17). On figures 17, 18, 19 some of the stability plots are shown for OMP algorithm in Ce

polar

basis.
The main step in the stability tests is increasing the noise in the initial image. For that, it is

most convenient to calculate a parameter called signal-to-noise-ratio (SNR)17. It is calculated
in the following way:

S/N =
1

σn
Iw · I0
|Iw|1

(19)

where σn is the noise scale used (given in advance), Iw and I0 are the weight and initial
image. The |Iw|1 is the total flux of the weight image. The usual range of SNR in images
taken by some telescope vary from very good (SNR ∼ 50) to very bad SNR ∼ 20 and this
quality scale is linear with respect to SNR.

Algorithm 4.1 Stability test algorithm
1: Take a noiseless image from the dataset provided from galsim package library
2: Make the decomposition of this image:

Coefficient set {fn}0
3: while 1 < i < N∗ do . N∗ is total number of noise realizations
4: Add noise to obtain some predefined SNR (SNR is in range 20 - 50)
5: Decompose the noisy image - Coefficient set is {fn}Ni
6: end while
7: Do a distance test:

dj = |{〈fn〉}Nj /{fn}0j − 1| . Averaging is done over all noise realizations
8: Do a standard-deviation test:

σri = σNi /{fn}0i . Note that this is relative scale

In the above algorithm the set {fn}0 is the representation of initial, zero noise added, image
in the shapelet space. The set {fn}Ni is the representation of the image in the shapelet space

17This represents the ratio of the maximum value of signal to the maximum value of noise that is to be
present in the image
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in the ith step of noise addition. When the distance test is done, first the coefficients {fn} are
averaged over all noise iterations. Then the ratio of the ith coefficient from the set 〈fn〉}N and
the corresponding coefficient value of the inital image is found and its deviation from one is
calculated. If the difference yields 0, that means that the given decomposition is very stable,
if in cotrary the value turns out to be close to 1, that means that it is highly unstable. The
last parameter is σri , the relative standard deviation of the ith coefficient upon increasing noise
(lowering of SNR). We calculated the relative value, since we want to know how big is the
standard deviation of ith coefficient after all the noise realizations are finished (σNi ) in respect
to ith coefficient from the initial decomposition {fn}0i . If it is orders of magnitude bigger,
then the reconstruction is not stable, if it is of order few dozen percent, then we refer to the
decomposition as a stable one (see figures 19 and 20 for depiction of this).
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(a) OMP

(b) SVD

Figure 10: Comparison between two algorithms is shown here. For the OMP algorithm number of
shapelets used in this reconstruction is 28, and for SVD it is 209. It is clear that with higher order
shapelets incorporated, more and more background is captured, which is not good. Note also that
with OMP the central part of the galaxy is better reconstructed than with SVD. This ultimately
means that the brightness profile is going to be better captured with OMP approach, which later on
leads to better galaxy shape estimation; Furthermore, capturing the brightness profile well means one
can derive the moments (centroid position, total flux, the rms radius) of the image more precisely
and hence, reduce the bias in the image simulation tests, which are mentioned in section 5. This was
done without any PSF (Point spread function) 18 correction, hence a lot of noise still remains in the
image, and is transmitted into the shapelt space as the strange residuals around the central object.
We used galsim library for PSF correction. Since the goal of the project was to find the most robust
decomposition technique, in regards to the amount of noise present in the image, this figure serves
well to demonstrate why approach with OMP is better then plain SVD / least squares approach.
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5 Image manipulation - generating artificial galaxy set
As it was mentioned earlier, it is important to know the bias well. In other words, it is
important to have as representative as possible simulated data so that the chosen image
analysis algorithm could be tested as close as possible to the real observational data 19. One
way of achieving this is doing image simulations, while preserving some of the feutares of the
observed galaxy set. This chapter serves as a demonstration on how it is easy to manipulate
with galaxy images represented in the shapelet space, which can lead to generating different
sets of galaxies to be used for bias determination.

For example, one can rotate pretty easily galaxies decomposed into the shapelet basis (see
section 2.2) - figure 11. Also, you could rescale galaxies pretty easily - figure 12.

(a) galaxy 1 (b) galaxy 2

Figure 11: Two different galaxies, rotated with the displayed angles θ; This was done in the shapelet
space, on the reconstructed galaxy images using OMP algorithm and 28 shapelets, in Cepolar basis.
It is important to note, that no pixelization effect took place upon rotation, pixel values were only
"redistributed" in the given display matrix.

One more thing could be done in simulating an image set, and that is slight perturbation
of the shapelet representation of a given galaxy image. The reason behind this is that it is
in general pretty hard to resample a distribution of points in a high dimensional space (think
about tips of vectors representing each galaxy in this N -dimensional shapelet space) 20. Of
course, it would be great if it were possible to easily find an underlying distribution of given
set of points, because then just by picking a point out of the distribution density function
would give you a new galaxy, which is not going to be some rubbish or unrealistic galaxy
21. We put certain effort in order to tackle with this problem by looking at potential clusters,

19Essentially, it is important to capture the moments of the galaxy image (brightness profile) as precisely as
possible in order to gain good insight into the important features which should be kept also in the simulated
galaxy set

20This is one more reason why it is preferable to reduce the dimensionality of the basis
21This is subjective matter, because it depends on the tolerance level for the particular problem in place
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(a) galaxy 1 (b) galaxy 2

Figure 12: Two different galaxies, scaled with the displayed factors η; This is in the shapelets space,
with reconstruction done using OMP algorithm and 28 shapelets basis functions, in Cepolar basis.
Again, no pixelization effect took place upon scaling, pixel values were only "redistributed" in the
given display matrix. Also, the important thing, moments g1 and g2 (semi-major and semi-minor axis
of the best fit elliptical gaussian to the image) were preserved.; Note that the small fluctuation in g1
and g2 in the right 4-tuple of images is because small parts of the object get scaled out of the image
frame.

forming in the selected data set of galaxies, more on this in section 6.1. An example of shapelet
reconstruction perturbation is given in figure 13.
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(a) galaxy 1 (b) galaxy 2

Figure 13: Here, we tried to simulate new galaxies by just perturbing initial shapelet reconstruction.
As it can be seen, g1 and g2 (semi-major and semi-minor axes of the best-fit elliptical gaussian for
this image) moments are indeed different for perturbed image (lower left), and as it was mentioned in
section 5, these are important in determining the brightness profile which is again important in bias
estimation. Lower right images show that indeed there is a difference in the brightness profle of the
reconstructed (top right) and its perturbed pair (lower left). Original image is shown in the top left.
We here also used an image provided by galsim package, because the effect of the perturbation is seen
better when there is no noise present in the image. Reconstruction was done using OMP algorithm
and 28 shapelets basis functions in Cepolar basis.

6 Insight for future work
In the next few sections a part of ongoing work is presented and some of the insights for future
advancement. In the first subsection some methods currently tried for clustering of galaxies
in the shapelet space is shown and the problems which follow (subsection 6.1).

6.1 Clustering in shapelet space

After the motivation for doing resampling of the set of points representing galaxy images in
shapelet space, it is good to at least try to visualize how the underlying distribution looks like.
Of course, here the set of galaxies is only 100 pieces long, hence no conclusion can be drawn
with a satisfying statistical significance. Nonetheless, we had time and therefore we tried to
play around with some of the available algorithms. More precisely, we tried to visualize our
data set with Multi Dimensional Scaling algorithm (MDS), and by doing some hierarchical
clustering methods. Also a suggestion for future clustering efforts is to use Self Organizing
Maps (SOMs Kohonen (1982)), a type neural network approach, but further reading needs
to be done in this area so that the results could be interpreted correctly. Brief description of
these two algorithms is given in the following two sections. Again, existing implementations
of the algorithms were used from the scikit-learn python library.
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6.1.1 Multidimensional scaling - MDS

(a) Cepolar (b) CeC

Figure 14: A MDS visualization of galaxy images in the shapelet space, obtained with OMP algo-
rithm, using 28 shapelets in Cepolar and C

e
C basis. Numbers standing beside blue points are indices of

the galaxies in the database. Dimension1 andDimension2 mark some arbitrary axes in the projected
2D space used for visualization, because preserving the relative distance from the N − dimensional
space to this 2D space is important.It sounds good, but when we look at some of the images in the
same cluster it doesn’t seem they are visually similiar, so it doesn’t seem that MDS can make the
problem of resampling easier.

MDS essentially visualizes the distance matrix obtained from the set of galaxy vectors living
in the shapelet space (galaxy images represented in the shapelet space). It is the user’s choice
of metric to be used. We choose standard Euclidian norm. Depiction of MDS visualization
is given in figure 14. MDS algorithm preserves the relative distance of galaxy vectors in the
N − dimensional shapelet space when going down and projectin to some arbitrary 2D space,
which is of course good if the metric is chosen correctly. Look at the figure 14 for further
commentary. But, as can be seen from figure 15, MDS algorithm clustered two galaxies which
we would not like to be judged as same, since one is pretty circular and the other elliptical.
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(a) (b)

Figure 15: Here two galaxies from the same cluster in Cepolar basis (figure 16a), galaxies labeled as
68 and 67 are shown (refer to electronic version for enhanced resolution). As it can be seen, there is
clear difference of the shape of these two galaxies, which is not prefered if they are ought to be in the
same cluster. Therefore, Euclidian metric is not good for comparing two galaxies in shapelet space.

6.1.2 Hierarchical clustering

This method allows us to see if there are certain groups forming inside the dataset (set of
galaxy vectors), and in that way, make the problem of resampling easier. Depiction of this vi-
sualization is shown in figure 16. The algorithm used is standard hierarchy clustering method
available inside the scikit-learn python library, for more details on the algorithm descrip-
tion refer to the python documentation.

As it can be seen from the figure below, again the clustering does not work well since the
galaxies shown in figure 15 are again clustered in the same cluster.
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(a) Cepolar

(b) CeC

Figure 16: A hierarchical clustering visualization of the potential cluster in the data set (galaxy
images reconstructed in the shapelet space). The reconstruction was done with OMP algorithm,
using 28 shapelets in Cepolar and CeC basis. Overall it seems it is in agreement with MDS algorithm,
which is not good because some of the galaxies in the same cluster look very different visually. A
follow up on this work needs to be done still (refer to electronic version for enhanced resolution).

7 Conclusion
In this paper we presented a new approach to galaxy image analysis with shapelets alongside
the use of sparse techniques (OMP algorithm 3.1). It was demonstrated that by the use of OMP
algorithm instead of least squares or SVD algorithms, it is possible to immensely reduce the
number of basis functions while preserving the quality of reconstruction (see figure 10). This
reduction of dimensionality offers the uniqueness of the decomposition (see second paragraph
in 3.1). Following the work of Bosch (2010), a new compound elliptical basis was constructed,
which has higher reconstruction precision than the previously used shapelet basis (section 4.1).
Also it was demonstrated that by plain perturbation of shapelet coefficients it is possible to
construct a new mock galaxy, with a distinct shape, creating in that way a new galaxy mock
dataset which could be used for bias estimation of different shape analysis tehcniques (see
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figure 13). This is very useful to have, because for the upcoming missions like the EUCLID
mission (ESA (2021)) in order to use the full potential of data higher precission image analysis
techniques need to be developed, one of which is the shapelet analysis tehcnique. In order for
it to be used in full it needs to have all of its biases determined and for this purpose, being
able to generate a realistic but variable mock galaxy image dataset is highly desirable.

26



(a) Cpolar basis - β = 1.88 (b) Cpolar basis - β = 2.10

(c) Cpolar basis - β = 2.53 (d) Cpolar basis - β = 3.18

(e) Cpolar basis - β = 4.92

Figure 17: The stability - distance - plots for Cpolar basis for all beta scales used. Beta scales are on
purpose chosen different than the appropriate beta scales for the given image, because we also wanted
to test the sensitivity of the decomposition algorithm (OMP in this case) on beta perturbation. One
can see that the biggest difference is in the higher order coefficients which is to be expected. Here N.C
refers to noise coefficients (refered to as {fn}N in section 4.2), and O.C refers to original coefficients
(refered to as {fn}0 in section 4.2). SNR is marked in the figures themselves.
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(a) Cpolar basis - β = 1.88 (b) Cpolar basis - β = 2.10

(c) Cpolar basis - β = 2.53 (d) Cpolar basis - β = 3.18

(e) Cpolar basis - β = 4.92

Figure 18: Here the stability - standard-deviation - plots for Cepolar basis for all beta scales used.
Here the σ(N.Ci) corresponds to σNi from section 4.2. SNR is marked in the figures themselves.
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(a) Cpolar basis - β = 1.88 (b) Cpolar basis - β = 2.10

(c) Cpolar basis - β = 2.53 (d) Cpolar basis - β = 3.18

(e) Cpolar basis - β = 4.92

Figure 19: Here the stability - relative standard-deviation - plots for Cepolar basis for all beta scales
used. The values shown in graphs correspond to σri values described in section 4.2. SNR is marked
in the figures themselves.
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(a) Cpolar basis - β = 1.88 (b) Cpolar basis - β = 2.10

(c) Cpolar basis - β = 2.53 (d) Cpolar basis - β = 3.18

(e) Cpolar basis - β = 4.92

Figure 20: Here the stability - relative standard-deviation - plots for Cepolar basis for all beta scales
used. The signal-to-noise ratio here is barely above 20, and as it can be seen by comparison with
the results shown in figure 19, the shapelet coefficients vary a lot more. But, almost all low order
shapelets n ≤ 2 are still stable, which is encouraging sign, because it means that even if the SNR is
close to ∼ 20, i.e. very bad set of observations, the shape is still captured well.
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