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1 Introduction
Following the work on observations and data reduction (Bellini et al. [4]; Baldwin et al. [5];
Watkins et al. [6];), made possible by high precision Hubble Space Telescope (HST) proper motion
measurements, it was possible to resolve individual stars and further constrain the properties of
observed globular clusters. With this advantage at hand, it is now possible to discretely model
the globular clusters, taking care of each given star separately. This approach has an advantage
over previously used methods (binning the field of view), because it doesn’t cause a loss of
precious information given by the observations. Using the likelihood analysis incorporated with
Jeans modelling, Watkins et al. [2] were able to make a dynamical model of the ω Cen globular
cluster, and reproduce it’s properties in agreement with previous studies. The previous research
encouraged a further effort in reducing the amount of assumptions needed for feasible modeling
of these complex stellar systems and hence enriching the available technique. Bianchini et al. [1],
introduced a new analytic function which is able to cover and describe the dispersion profile of
the whole range of stellar populations inside the globular cluster:
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where the meq represents the mass of a star which is in full equipartition, and hence has a
qualitative and physical weight in describing the cluster state, along with σ0 which represents the
dispersion of star with a mass m = 0. The dependence σ(m) was known previously to exist, but
the correct dependence was unknown (Trenty and van der Marel [8]). Due to lack of observational
data and computing power, people didn’t account for this in their analysis. Now, with the
presence of state of the art likelihood analysis tools like the emcee code (Foreman D. et al [7])
and available CPU and GPU computing power, it is possible to construct more detailed models
and enhance the current knowledge about these stellar systems. The goal of this summer project
was to incorporate the proposed σ(m) from Bianchini et al. [1] dependence into the existing Jeans
modeling code developed by Watkins et al. [2] (CJAM code) and use the emcee code in order to find
the appropriate meq parameter for the cluster of interest. With this meq parameter determined,
one could make conclusions on other relevant cluster properties and determine it’s dynamical
state, and perhaps make some constraints on the presence of intermediate black holes (IMBHs)
in the centers of observed clusters.

2 Modelling the cluster
Before applying developed models to the observational data it is necessary to filter out any bad
ideas, and hence we used the simulation data provided by Downing et al. [9] and tried to make
our models work on this data set.

Analysing the dynamical structure of globular clusters with the CJAM code1 requires some
input information of it’s potential. Because it is nearly impossible to obtain intrinsic density

1It should be noted, that by dynamical modelling here, we mean on deducing the moments (first and second) of
the stars, with which it is possible to tell the dynamical state and structure of the cluster.
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distribution, and hence the intrinsic potential distribution of the globular cluster, one has to
deal with projected quantities. The practical and efficient way of representing the projected
density distribution of the globular cluster is using multi gaussian expansions (MGEs). Using
Capellari’s code [3], we are able to produce luminous and mass MGEs of the simulated cluster
(figure 1). This information on ν(r) (density distribution) and l(r) (luminous density) is necessary
for constraining distribution function f(~r,~v), which is in return used in limiting the possible
values of clusters’ potential Φ(r).

2



(a) Luminosity MGE (b) Mass MGE

(c) Dependance of M/L[M�/L�] with radius

Figure 1: MGE obtained with Cappelari’s 1D MGE expansion code [3]

In practise, it is only possible to obtain the luminous MGE, because it is very hard to measure
the mass of individual stars in the cluster. Here, the l(r) and mass-to-light ratios give the
information on ν(r). Further, by using this information and some additional assumptions on
axisymetry, alignment of velocity elipsoid with chosen cylindrical coordinate system and constant
anysotropy and mass-to-light parameter, it is possible to solve the Jeans equations for the second
moments. The second moments directly infer the shape of the velocity elipsoid of the cluster,
which in addition gives constraints to internal dynamics. In order to obtain a unique solution for
the first moments also, an assumption for contributions of ordered and random motion to the
velocity dispersion is needed (eq (22) in [2]). This assumption is incorporated into the code by
assigning a rotation paramater κ to each luminous MGE. With the known first moments it is
possible to make conclusions on internal rotation in the cluster as well construct the covariance
matrix needed for likelihood analysis of the calculated moments (see [2] chap. 3). After one
calculates first and second moments, it is possible to constrain the distribution function f(~r,~v, t),
which further, gives constraints on potential Φ(r).

In fig. 2 the difference between the projected and spherical velocity dispersion for the chosen
simulation is shown. One would expect that in the outer shells there would be no difference, but
it seems that for the Z-axis it is not the case (fig. 2c). This could imply some missunderstanding
of the data.

Nonetheless, the performance of the CJAM code was tested with this data. The comparison of
the model with the projected velocity dispersion calculated from the simulation is presented in
the right column of fig. 3 (black is the model). Here, the input for the cjam were the positions
of 5000 stars from the mean-mass range (0.3 − 0.4M�) within the ≈ 200′′. Reason for this is
to simulate the observational conditions, because rarely is the data beyond the half-light radius
obtained. One could notice that the model for the right input parameters gives the moments
which are in agreement with the low mass-range end of the set (0.1− 0.2M�).
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(a) (b)

(c)

Figure 2: Here the velocity dispersions for different stellar masses for each axis are shown. From
(a) to (c) are X,Y and Z-axis respectively. The colors corespond to different mass bins, red - high
mass bin, blue - low mass bin and gree - mean mass bin. The simulation data (simulation one
at 11Gyrs from [1]) was used in order to obtain these plots. The data points with error bars
represent the data binned in the projection plane (in this case the X-Y plane of the simulation
data), and the dashed lines represent the binning done in the spherical manner. The errors are
calculated as the standard deviation of the mean for the data points in the selected bean, namely
∆σ = σ/

√
Nbin. The odd thing is the disagreement in the plot with Z-axis dispersion shown. One

would expect that the dispersion on the outher shells (3D-spherical) and rings (2D - projected)
should be the same, as is the case fo X and Y-axis.

On the other hand, when Binachini’s formula is implemented, model gets a lot better, and
reproduces the dispersion for the right mass range (left column of figures in fig. 3. The only
thing to worry about here is that the model finds parameters which are not in accordance to
the ones calculated from the data. In other words, the parameters are βz ≈ 0.0432, κ ≈ 0.0929,
M/L ≈ 1.0808, i ≈ pi/2, distance 10kpc, ε ≈ 0 and m ≈ 1.1143, while the meq parameter was
kept fixed to 2M�. One could see from the emcee chain fig. 8 That it still hasn’t converged, even
though, the models get highly rated. Similiar thing happens with other runs (fig. 4, ??).

Possible restriction which can be made is in the prior likelihood distribution. The emcee chain
is restricted from below for m and meq, but not from above. The upper limit should be the
physically meaningful one, for example, m < 1M�, because only the extreme cases of stars have
masses bigger than 1M� in the cluster, and meq < 10.

In order to see the behavior of emcee sampling, a run with only meq and m as free parameters
is presented in the 4.4. Here the upper prior constraints are present. It could be seen that even
for the right calculated parameters of the cluster, the chain quickly converges but has a quite
dispersed sampling. Detailed description of the incorporation of equipartition into the CJAM is
presented in the next chapter.
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Figure 3: Using the cjam code developed by [2], one can try to model the dynamical state of the
observed cluster. The figures in the right column are the ones which don’t include modification
with formula given by [1], and the ones on the left are the moments produced by the best model
as found by emcee in the run 4.2. The color representation is the same as in figure fig. 2. The
input parameters here are given in accordance to the calculated parameters of the simulated
cluster, namely: (1) βz ≈ 0.17; (2) κ ≈ 0.0; (3) M/L ≈ 1.47 [M�/L�]; (4) i ≈ π/3; (5) distance
≈ 10[kpc];. When it comes to the left column (4.2), the best model in the emcee chain finds
the following: (1)βz ≈ 0.0432; (2) κ ≈ 0.0929; (3) M/L ≈ 1.0808; (4) i ≈ pi/2 (5) distance
10kpc; (6) ε ≈ 0; (6)m ≈ 1.1143M�. The MGEs needed for the model creation were calcualted
using Capellari’s 1D MGE expansion [3] and are shown in the figure 1. It seems that the model
reproduces the best the high mass end of the stellar population. This is a rather strange result,
because the input mass bin is, as it is also noted in the legends of the figures, 0.31− 0.33[M�].

3 Mass equipartition
As it was noted in section 3, the CJAM code assigns moments based on stars (x, y) positions,
and then a separate code calculates the likelihood of this model being good. This is done in
the approximation with gaussians (eq (12) from [2]). Only thing that is changed in this, for
incorporation of equipartitioning formula, is the change of the dispersion used in the covariance
matrix. Therefore eq. eq. (1) is used for the second moments in the covariance matrix from the

5



previously mentioned paper.

σnew(mi) = σold(m)exp(−1

2

mi −m
meq

), (1)

where σnew is the new 2nd moment assigned to a given star with mass mi. An assumption
that the initial model assigns σold 2nd moments to some mean mass star sample with a mass of
m is made. Results of the chains and marginalized distribution probabilites are shown below.

3.1 Run 1: Both meq and m are kept free

Figure 4: Here, all the parameters are set free for the emcee chain and its progress is shown.
Eventhough the models get rated quite good (as they really are lying on the right mass range).
The chain manages to converge on close to right values for M/L, ε and κ, but the anisotropy is
lower than it was calculated for the simulation ≈ 0.17. Also, the meq and m are quite high.
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Figure 5: The distributions are presented in this figure.

Figure 6: Overlayed input data, and the calculations of the best model from CJAM, as found by
the chain.
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Figure 7: The proper motions.
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3.2 Run 2: Only m is free parameter and meq is kept constant

Figure 8: As in the the previous case, chain is pretty dispersed, and the value found for
anisotropy is lower than what would be expected. It is interesting that both of these runs have
close predictions. Here meq parameter is fixed to 2.M�.
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Figure 9: Distribution of the sampling marginalized.
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Figure 10: Overlayed input data and the model.
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3.3 Run 3: Only meq is kept free and m is kept constant
In this run I have added the upper restrictions for prior probability distribution:

• meq has to be lower than 10.M�

• m has to be lower than 1M�

Figure 11: Again, agreement with the chains of M/L, βz, κ and ε, but the chain for meq is pretty
dispersed, even though there is the upper restriction. Here, the value of m is kept constant to a
value of 0.15M�
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Figure 12: Distribution of marginalized sampling

Figure 13
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3.4 Only meq and m as free parameters with upper restrictions
Here also I have added the upper restrictions for prior probability distribution:

• meq has to be lower than 10.M�

• m has to be lower than 1M�

Figure 14
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Figure 15
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Figure 16
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4 Questions
1. Maybe I should incorporate two kinds of calculations for the chain with CJAM code? One

which is going to fit without equipartition formula, and the other one which is going to
use the mean mass from the mass range which is reproduced the best with previous code
and the meq parameter which is going to be the only free parameter (m is going to be
determined from the first one, by looking at the data which is reproduced best with the
model).

2. What upper restriction is physically meaningful for meq parameter?

3. In reference to the chains above, I have to ask how do we know that the eq eq. (1) is good
to use? Maybe we should use it only in case that for each try of the emcee we do the
procedure as described in question 1?

4. Do you have some ideas, why could the model without any correctin with Paolo’s formula
be so high in the center? Ling mentioned to add the surface number density, because that
information could flatten, if I understood correctly?
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